
Exam Imperative Programming

Friday, December 6, 2019, 19:00 h.

• You can earn 90 points. You will get 10 points for free. So, you can obtain 100 points in total, and your exam grade
is calculated by dividing your score by 10.

• This exam consists of 5 problems. The first two problems are multiple choice questions. The problems 3, 4, and 5
are made using a computer. All problems are assessed by the Themis judging system. For each of the problems 3,
4 and 5, there are 10 test cases. Each test case is worth 10% of the points.

• Note that manual checking is performed after the exam. For example, if a recursive solution is requested then a
correct iterative solution will be rejected after manual checking, even though Themis accepted it. Also, precomputed
answers will be rejected.

• This is an open book exam! You are allowed to use the pdf of the reader (which is available in Themis), pdfs of
the lecture slides (also available in Themis), the prescribed ANSI C book (hard copy) and a dictionary. Any other
documents are not allowed. You are allowed to use previous submissions that you made to Themis.

Problem 1: Assignments (20 points)
For each of the following annotations determine which choice fits on the empty line (.....). The variables x, and y are of
type int. Note that A and B (uppercase letters!) are specification constants (so not program variables).

1.1 /* x == A, x + y == B */ 1.4 /* x == A, y == B */
..... x = 2*x + y; y = 2*x + y;
/* x - y == A, x == B */

(a) x = x - y; (a) /* x == 2*A + B, y == 2*A + B */
(b) x = x + y; y = x - A; (b) /* x == 2*A + B, y == 4*A + 3*B */
(c) x = x + y; (c) /* 2*x == A - B, y == 2*B + A */

1.2 /* x - y == A, x == B */ 1.5 /* x == A, y == B */
..... x = 2*x + 2*y; y = x - 2*y; x = x - y;
/* x == A, x + y == B */

(a) y = 0; (a) /* x == 2*B, y == 2*A */
(b) x = x - y; (b) /* x == B, y == 2*A */
(c) x = x - y; y = x + y; (c) /* 4*x == 3*A - 8*B, 4*y == A - 4*B */

1.3 /* x == A + B, y == A - B */ 1.6 /* x + y == A, 2*x + y == B */
..... x = x + 1; y = y - 1;
/* x == 4*A, y == 5*A - 3*B */

(a) x = 2*(x + y); y = x + y; (a) /* x + y == A, 2*x + y == B */
(b) y = y-2*x; x = 6*x+2*y; y = x+y; (b) /* x + y == A, 2*x + y - 1 == B */
(c) y = 2*y - x; x = y+3*x; y = x+y; (c) /* x + y == A, 2*x + y + 1 == B */

1

Problem 2: Time complexity (20 points)
In this problem the specification constant N is a positive integer (i.e. N>0). Determine for each of the following program
fragments the sharpest upper limit for the number of calculation steps that the fragment performs in terms of N. For a
fragment that needs N steps, the correct answer is therefore O(N) and not O(N2) as O(N) is the sharpest upper limit.

1. int s = 0;
for (int i=0; i < N; i++) {
int k = 2 + i%5;
for (int j=1; j < N; j*=k) {

s += i + j;
}

}

(a) O(logN) (b) O(
√
N) (c) O(N) (d) O(N logN) (e) O(N2)

2. int i=0, j=0, s=0;
while (i*j < 2*N) {
i = i + 1;
j = j + 2;
s = s + i + j;

}

(a) O(logN) (b) O(
√
N) (c) O(N) (d) O(N logN) (e) O(N2)

3. int s = 0, i = 0;
while (s < N*N) {
s = s + i;
i++;

}

(a) O(logN) (b) O(
√
N) (c) O(N) (d) O(N logN) (e) O(N2)

4. int i = 1, s = 0;
while (s < N) {
s = s + i;
i += i + i%2;

}

(a) O(logN) (b) O(
√
N) (c) O(N) (d) O(N logN) (e) O(N2)

5. int i=1, s=0;
while (i < N*N) {
i = 2*i;

}
while (i > 0) {
s += i;
i--;

}

(a) O(logN) (b) O(
√
N) (c) O(N) (d) O(N logN) (e) O(N2)

6. int i=1, s=0;
while (i*i < N) {
i = 2*i;

}
while (i>0) {
for (int j=0; j < i; j++) {

s += i + j;
}
i--;

}

(a) O(logN) (b) O(
√
N) (c) O(N) (d) O(N logN) (e) O(N2)

2

Problem 3: Number of Pair Sums (15 points)
The input of this problem consists of two positive integers n and k, followed by a series of n non-negative integers without
duplicates (see examples). The output should be the number of pairs (a, b), where a and b are drawn from the series, such
that a+ b = k and a 6= b. Note that the pair (a, b) is considered to be the same pair as (b, a).

Example 1:
input:
5 42:10,15,20,22,27
output:
2

Example 2:
input:
8 10:1,2,4,3,7,8,6,0
output:
3

Example 3:
input:
6 42:11,13,17,19,23,29
output:
2

Problem 4: Horner representation (15 points)
The Horner representation of a polynomial expression is named after William George Horner. The Horner representation
of the polynomial expression a0 + a1x+ a2x

2 + a3x
3 + · · ·+ anx

n is given by

(((· · · (anx+ an−1)x+ · · · a3)x+ a2)x+ a1)x+ a0

As a concrete example, the Horner representation of the polynomial expression 8 + x− 7x2 + 4x3 + 6x5 is

((((6x+ 0)x+ 4)x− 7)x+ 1)x+ 8

Note that in the polynomial expression, the term that corresponds with x4 is missing. Hence a4 = 0. Moreover, note that
the coefficient that corresponds with x2 is negative (a2 = −7).

The input of this problem consists of a positive integer n followed by a polynomial expression which is a sum of n
terms of the form a*xˆb where a and b are integers and 0 ≤ b ≤ 100. The terms may be in any order (compare the
examples 1 and 2). There may be several occurrences of terms with the same degree (see example 3). Your program
should output the Horner representation of the polynomial expression that is given on the input.

Example 1:
input:
5 8*xˆ0+1*xˆ1-7*xˆ2+4*xˆ3+6*xˆ5
output:
((((6*x+0)*x+4)*x-7)*x+1)*x+8

Example 2:
input:
5 6*xˆ5+8*xˆ0-7*xˆ2+4*xˆ3+1*xˆ1
output:
((((6*x+0)*x+4)*x-7)*x+1)*x+8

Example 3:
input:
8 1*xˆ3+2*xˆ3+3*xˆ3+1*xˆ0+20*xˆ0+36*xˆ3+21*xˆ0+42*xˆ2
output:
((42*x+42)*x+0)*x+42

Problem 5: Sum of Subsets (20 points)
Consider the series [1, 2, 3]. Ignoring the order of the numbers (i.e. [1, 2, 3] is the same as for example [3, 1, 2]), the series
has seven non-empty subseries: [1], [2], [3], [1, 2], [1, 3], [2, 3], [1, 2, 3].
If we sum the values in each of these subseries, and sum these sums, we find the sum of subsets of the series [1, 2, 3]:

1 + 2 + 3 + (1 + 2) + (1 + 3) + (2 + 3) + (1 + 2 + 3) = 1 + 2 + 3 + 3 + 4 + 5 + 6 = 24.

Write a program that reads from the input an integer n (where 1 < n ≤ 20) and outputs the sum of subsets of the series
containing the integers 1 upto n, i.e. the series [1, 2, 3, .., n].

Example 1:
input:
3
output:
24

Example 2:
input:
5
output:
240

Example 3:
input:
10
output:
28160

3

